

April 2024

GovInfo Components and Technologies

A. Overview

This document is intended to provide a high-level overview and understanding of the
GovInfo System architecture. It should be referenced in conjunction with the GovInfo
Architecture System Design Document, volume I, particularly Figure 4.1-1 Component
and Development Diagram.

There are two main GovInfo subsystems that handle separate areas of major concern.
These subsystems have significant interactions to support the ingest, preservation, and
public access functions of the system.

1. Content Management and Preservation Subsystem
2. Public Access Subsystem

Both subsystems rely on the same underlying compute and storage infrastructure that are
managed by GovInfo system administrators and GPO’s enterprise infrastructure support
team.

This document also includes a list of technologies currently in use on the GovInfo program
to provide a better understanding of the context of the system.

B. Component Descriptions

1. Content Management and Preservation Subsystem
The Content Management and Preservation Subsystem is responsible for the intake of new
Government documents and publications into the system, including a variety of checks,
processing, and preservation functions to support the needs of GPO to maintain its ISO
16363 Trustworthy Digital Repository status. GPO is committed to ensuring that official
Government publications from all three branches are preserved for future generations in
the event of technology failure, aging of hardware, or technological change. It serves as the
primary management and storage area for content and metadata that are published for
public access by the Public Access Subsystem. The following sections describe the major
functionality of the Content Management and Preservation Subsystem components
including the closely related Content Processing Framework.

https://www.govinfo.gov/media/GovInfo_Architecture_v7.pdf#page=23
https://www.govinfo.gov/media/GovInfo_Architecture_v7.pdf#page=23

GovInfo Components and Technologies

May 2024 2

Documentum

Documentum is the commercial off the shelf (COTS) software that serves as the content
management system and preservation repository for GovInfo content and metadata. It has
been configured to support GPO’s implementation of the Open Archival Information
System reference model (OAIS, ISO 14721) including but not limited to aspects of ingest,
data management, and archival storage, preservation planning, administration, and
access functions. GovInfo’s Documentum implementation currently enables user
interaction via WebTop. It also works with several monitoring jobs to ingest content from a
variety of sources (e.g. SFTP, hot folders for internal content, Congress.gov API, and
Salesforce). Documentum interfaces with the publisher component within the Public
Access Subsystem to make content available to the public.

Databases

The GovInfo Documentum repository currently operates on an Oracle database. The
database schemas are defined, and tables populated, by Documentum applications. The
database maintenance is therefore not about managing schemas, tables, et cetera, unlike
standalone or custom database applications. For GovInfo, the database maintenance must
be performed in the context of the Documentum repository. Thorough understanding of
the interactions between Documentum applications with the underlying database is
critical to manage the database properly and effectively. Repository performance issues
may find root causes in the underlying database; proactive monitoring, careful tuning of
the database, and quarterly security patching, is the key to maintain a healthy repository.
Database availability and uptime is also a key consideration; daily backup, clustered
operation and synchronization between nodes (RAC, Oracle Clustered database configured
on NetApp iSCSI Luns) /sites (Oracle Data Guard is implemented between primary and
secondary production sites to ensure data protection and disaster recovery) are critical to
daily operations, and knowledge of Oracle-specific hardware and software constraints and
setup are necessary for continued service availability. Note, the GovInfo Drupal content
management system for content curation activities and Matomo for analytics metrics both
operate on MySQL databases and require similar considerations. All the Oracle and MySQL
database servers run on VMware virtual machines (VM).

Processor

The GovInfo processor interacts with the Documentum system and other Content
Management and Preservation Subsystem components to perform several important
workflow steps as part of the GovInfo ingest process. This includes parsing content files to
generate granules, combine files, generating PREMIS preservation and custom GovInfo

GovInfo Components and Technologies

May 2024 3

descriptive/technical metadata, creating derived public-access renditions of content and
metadata, signing/optimizing/OCRing/certifying of PDF content, validating packages, and
other tasks.

Other Applications

OAIS Packaging
This functionality takes files provided from content originators and organizes them in a
model that fits the ISO 14721 Open Archival Information System model, as implemented
by the GovInfo program.

Preprocessing and Hotfolders
This functionality provides for any preprocessing jobs that are required prior to
processing within Documentum. Examples include interfacing with the Salesforce API for
the Congressionally Mandated Reports collection, PDF file validation, and Submission
Information Package generation.

Internal and external users upload files or packages to hotfolders through SFTP services.
Services consumes these files through direct mount and upload.

Virus Scanning
The virus scanning component is used as a service to validate that content files being
ingested into the Content Management and Preservation Subsystem are free of viruses
and malware. This is currently implemented via a COTS Malware protection tool via API
call.

PII Scanning
The PII scanning component is implemented as a service to identify content being
ingested that may contain PII. This check is requested via an API call to software provided
by a COTS PII scanning tool and returned to the ingest processing workflow.

PDF Signing and Optimization
This functionality integrates an Adobe AEM service backed by a hardware security module
that allows for PDF signing and other functionality.

Publication Linking
This component provides the ability to link multiple GovInfo content packages based on
certain metadata fields and defined relationships. It uses Apache Jena and Fuseki with a
custom OWL ontology. As an example, Publication Linking provides linkages between
various versions of a bill text, or from a bill text to the equivalent public law, and various
other relationships among documents. For more information, see
https://www.govinfo.gov/related-documents.

https://www.govinfo.gov/related-documents

GovInfo Components and Technologies

May 2024 4

Metadata Editors
GovInfo uses customized metadata editors based on Orbeon Forms to allow editing of
descriptive and preservation metadata associated with GovInfo content. This is integrated
with the Documentum component to allow internal authorized users to build content
packages, make edits to existing published packages, and update preservation-related
metadata for content archived in the system.

USLM Web Services
The USLM Web Services component is used to perform conversion of submitted content
files into United States Legislative Markup-compliant XML. For reference see
https://github.com/usgpo/uslm.

Schemas
GovInfo uses custom XML schemas to manage and persist descriptive and technical
metadata for the content ingested and preserved within the system. Schemas are built,
updated, and extended to fit the needs of new and existing content.

Content Processing Framework
The Content Processing Framework is a set of standalone Java applications that allows
internal users to execute several jobs thru batch processing on content outside the system
prior to submission on an ad hoc basis, including validation of certain file characteristics
using tools like FITS or Jpylyzer. Additionally, it can perform conversions of TIFF files to
JP2 files and perform MARC XML conversion as well as PDF signing for other Federal
agencies by having their respective FTP site linked to CPF hot folders.

Analytics
GovInfo uses an on-premise installation of the open-source Matomo web analytics
platform to help track overall usage of the public GovInfo system through integration of
access logs as well as a JavaScript tracker. Data is anonymized and aggregated to help
track retrievals of GovInfo content and metadata as well as inform the type of devices and
browsers used to access the system. GovInfo also uses an on-premise installation of
Splunk for log aggregation for analytics research and log monitoring.

2. Public Access Subsystem
The Public Access Subsystem is responsible for providing public access to copies of
Government documents and publications that have been ingested into GovInfo. The
following sections describe the major functionality of the Public Access Subsystem
components.

https://github.com/usgpo/uslm

GovInfo Components and Technologies

May 2024 5

Search Applications

These applications are key interfaces between the Public Access Subsystem and the
Content Management and Preservation Subsystem.

Solr Search Engine
GovInfo’s open-source Solr search engine implementation is the heart of the Public Access
Subsystem, providing the indexed content and metadata used by other Public Access
components to generate the public user interfaces, including the various browse and
search use cases as well as API access for the developer community.

A custom Solr Search Engine core includes support for custom fields, dynamic field
definitions, custom fieldType definitions, as well as custom analyzers, tokenizers and
filters.

Additionally, custom plug-ins are implemented to provide support for Lemmatizers, Query
Digesters, Custom query operations, and custom Tokenization

The Solr Search Engine installation is designed for both high-availability and scalability.
There are two rows of Solr servers, with one row dedicated as the primary indexer.
Indexed content is automatically replicated to the second row. A software load balancer
automatically distributes the query load across the Solr servers. Scalability is achieved by
adding one (or more) servers to each row.

Publisher
The publisher component interacts with the Content Management and Preservation
Subsystem’s Documentum component to make processed content and metadata publicly
available, allowing indexing by the search engine and sending information to the
Notification App to update RSS and Sitemaps.

The publisher automates pulling new and updated content from the Content Management
and Preservation Subsystem. It uses XSL to transform that content into Solr documents
with custom metadata. XSL transforms also used to generate public preservation (PREMIS
XML) and descriptive (MODS XML) metadata files.

The publisher uses Apache Tika to extract text from binary content. That text can be used
to populate indexed metadata as well as the main body and teaser.

The publisher uses JSoup to support automated crawling and indexing of curated content.

The publisher also includes an API interface for maintenance of remotely hosted video
content.

GovInfo Components and Technologies

May 2024 6

Consistency Check
This custom Java component is used to perform regular validation of consistency between
content available to the public in the search engine and the Documentum system.

Parsers
This custom java component is used to extract metadata from submitted files during
ingest processing, which are then propagated into a variety of different forms within both
subsystems. The parsers integrate with the Processor component of the Content
Management and Preservation Subsystem.

Search API
The Search API component uses dynamic groovy templates and custom solr interface to
provide decorated results. These include navigators and hierarchical navigators,
hierarchical browse tree navigation, custom drop-down data population, and custom
search results displays including computed fields and teasers.

The Search API implements custom search fields that simplify common and complex Solr
queries.

The Search API implements a custom software load balancer to distribute the load across
all available Solr servers. The load balancing also implements automated error detection
and blacklisting.

The Search API implements custom query mapping to convert common search phrases
into specific Solr query syntax.

Query Parser Language
This is a custom layer to convert Solr queries into an efficient Lucene syntax. This layer
implements custom query operators (before, between, boost, starts_with, ends_with, near,
phrase, scope, etc.). The Query Parser Language supports search within XML blobs.

Web Applications and Services

These Services are responsible for providing public access to GovInfo content and
metadata.

GovInfo UI Web Services
GovInfo web services are the core of the GovInfo website. They provide interfaces to the
backend services that powers most of the functionality of the website. These web services
are separated into multiple submodules to support GovInfo functionality for end users,
including Related Documents, Content Details, Browse, and Search functionality. The web
services interfaces with three forms of storage - Search indices, RDF store, and file system

https://www.govinfo.gov/

GovInfo Components and Technologies

May 2024 7

metadata files - to perform most of the processing and present data to the front-end
application in JSON format.

The web service offloads most of the heavy-duty processing like doing XSL transformation
on the metadata, Zip file creation, and caching the file to another application by creating
an event job file before delegating it to the target Content Delivery and Caching Services
application. The web service uses the delegate pattern to ensure it is loosely coupled with
the services layer. It also uses commonly used REST standards to handle requests from
the web front end.

Bulk Data Repository
GPO makes select GovInfo collections available in a machine-readable format (i.e., XML)
via the GovInfo Bulk Data Repository. The top-level directory for select collections, such as
the Federal Register and Code of Federal Regulations, also includes a Resources directory
that contains the XML schema, XSL stylesheet, and user guide necessary to make the XML
to be transformed to HTML for the browsers to present in a human-readable format. The
Bulk Data repository provides access this data through XSLT to make a human- and
machine-readable interface.

Public Functionality: https://www.govinfo.gov/bulkdata

Redirect Dispatcher
This component is designed to support the users who had bookmarked URLs or links of
the predecessor FDsys application before its retirement. Dispatcher is a drop-in
replacement for the legacy FDsys application that receives all the traffic that FDsys was
supposed to receive and redirects the requests to equivalent GovInfo pages. Dispatcher
handles all the links that FDsys used to handle, not just the content links but also search,
browse, details, and document in context links.

CGI Redirects
This component provides backwards compatibility for multiple legacy patterns of content
links to access documents available on GovInfo. This component supports users who have
historical links referencing GPO Access, a legacy application and precursor to FDsys and
GovInfo. These historical links appear on some government websites as well as in print.
GPO Access was retired in 2011. When FDsys took over its functionality, redirects were put
in place at that time. During the development of GovInfo, GPO determined that there was
an ongoing need to maintain these legacy links. This interface continues to honor legacy
GPO Access content retrieval patterns using the latest GovInfo infrastructure.

Sample link handled by CGI redirects: http://frwebgate.access.gpo.gov/cgi-
bin/getdoc.cgi?dbname=110_cong_public_laws&docid=f:publ085.110

http://www.gpo.gov/fdsys/bulkdata/
https://www.govinfo.gov/bulkdata
http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=110_cong_public_laws&docid=f:publ085.110
http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=110_cong_public_laws&docid=f:publ085.110

GovInfo Components and Technologies

May 2024 8

Link Service
The link service application provides a standard and predictable way to reference content
or metadata that is available on GovInfo. These references often take the form of
embedded links in third-party content or services. Published content on GovInfo is
uniquely identified using an “accessid” metadata field. The same value manifests itself as
packageid and granuleid if the content is package or granule, respectively. In addition, the
accessid is a Solr attribute for a document to uniquely identify it. The Link Service
provides a way to identify content by using terms and identifiers that are germane to
select GovInfo content, such as a combination of Congress, bill type, and bill number.

The Link service adheres to the Open API 3 specification and the user interface is a
customization of the Swagger-ui.

Public Functionality: https://www.govinfo.gov/link-docs

Public API
The GovInfo public API is the main means to programmatically expose GovInfo content
and metadata to third party developers and other business partners or Federal agencies.
Anyone who is interested in consuming these APIs should enroll and have an api.data.gov
key. The GovInfo Public API endpoints are diverse and far-reaching in their functionality
and usefulness, as the design is heavily influenced by the input of the stakeholders. The
API endpoints follow REST and HATEOS paradigms, so a consumer of the API can directly
follow up to related resource links. These APIs differ from the GovInfo UI Web Services in
that they are intended to serve as a stable, contracted interface for external developers
rather than the specific evolving needs of the GovInfo user interface. The Public API
adheres to the Open API 3 specification and the user interface is a customization of the
Swagger-ui.

Public Functionality: https://api.govinfo.gov/docs

See also:

• Developer Hub: https://www.govinfo.gov/developers
• GitHub Repository: https://www.github.com/usgpo/api
• GovInfo Feature Articles:

o Overview
o Related Documents Service
o Search Service

Content Curation (Drupal)
In addition to GovInfo content and metadata, GPO staff author and publish “curated
content” that serves as finding aids and resources for users. This content includes feature

https://www.govinfo.gov/link-docs
https://api.govinfo.gov/docs
https://www.govinfo.gov/developers
https://www.github.com/usgpo/api
https://www.govinfo.gov/features/api
https://www.govinfo.gov/features/api-related-document-service
https://www.govinfo.gov/features/search-service-overview

GovInfo Components and Technologies

May 2024 9

articles, help pages, custom landing pages, and other content. This includes functionality
to upload and manage media files for use within articles. This functionality is
implemented via a custom implementation of the Drupal Content Management System
using custom modules and Twig templates that integrates with the look, feel, and
functionality of the GovInfo custom applications, including the search widget available on
every page. Drupal sign-in uses Two- factor authentication using Authenticated AES
encryption method for Encrypt through the Defuse PHP Encryption library and is
seamlessly integrated with enterprise LDAP for authenticating the users. Drupal is
accessed only internally by authorized users, with custom static publishing of curation
content and media to the public. The custom site crawlers crawl the site and publish the
content to an intermediate (Preview) static site which will then be published to the public
site after review. The static crawled pages and sections are seamlessly integrated and
embedded with the dynamic sections of the site using micro front end architecture.
Content curation also triggers events for the crawled static pages to be consumed by the
publisher to index the pages in Solr for curation search. Drupal is backed by a MySQL
database that stores content and metadata.

Content Curation Search
 The content curation search component provides the web service interface and React-
based front-end for the public curation search functionality for about, feature articles, and
help pages. This integrates the curation functionality provided by Drupal with the GovInfo
Solr search engine, where the curated content has its own distinct collection, separate
from GovInfo’s official publications.

Public Functionality: https://www.govinfo.gov/app/search/curated/API/

Notification App
The Notification App component is a custom Java application that receives events from
the Publisher component to update RSS feeds and Sitemaps based on new or updated
public content. The component creates or updates the sitemap index files and the sitemap
yearly file for every collection of the packages received in the event files. After the process
is done, the same event is forwarded to the RSS event queue to generate the RSS feed. The
robots.txt file deployed at the root of the application containing an entry for GovInfo and
Bulk Data sitemap index files for every collection. Heavy use of xml parsing is done using
SAX, StAX and JAXB parsers. Sitemap consistency check is performed from time to time
using several custom jobs which provide custom reports for any inconsistencies in the
sitemaps and RSS feeds. External crawlers start by requesting and parsing the index files.
Then for each sitemap element, the last modified date can be compared against the

https://www.govinfo.gov/app/search/curated/API/

GovInfo Components and Technologies

May 2024 10

internal saved value and the sitemaps are crawled and indexed accordingly depending on
the last seen modified value.

Caching Services
The Caching Services component asynchronously processes and streams GovInfo
collection resources like XML, CSS, XSL, DTD, image files, metadata, and content files to
end users. This multi-threaded application component receives the input data requests in
the form of events for different granules for complex collections. When users access them
via the website or Public API for metadata and Zip file content, the component checks for
their existence in the file system cache, processes them, and caches them in the file
system before passing to the Delivery service, which streams requested files to the end
users.

Delivery Service
The Delivery Service is a lightweight spring-boot-based java application that maps the
sanitized input from user request for content and metadata to the backend Md5 hash
distributed file system on the GovInfo filers. The final computed paths are then handed
over to the web servers which delivers the file to the end client by adhering to the request
headers and uses fast optimization and caching techniques

The delivery service uses md5 hashing to identify the paths of the content files and its
resources in ACP-cache and dmz-cache. The delivery service also interacts with the
caching services to create on demand event files for large workloads such as ZIP and large
granule mods file. The event file is later consumed by the caching services application and
the content is generated and finally delivered back to the client on a retry-after basis.

The Delivery Service services content and metadata URL requests for the entire Public
Access subsystem, supporting the following components:

• GovInfo UI Web Services
• Bulk Data Repository
• Public API
• Redirect Dispatcher
• CGI Redirects
• Caching Services

Pre-Render Service
The Pre-Render Service uses an Open-source prerender server running on nodejs
technology and expressjs in a load balanced configuration on on-premise servers for
partner crawlers. There are customizations to the underlying source for adding log files,
timeout customizations, and there are customizations for reporting metrics to

GovInfo Components and Technologies

May 2024 11

Prometheus (pull). This allows certain data partners to crawl prerendered HTML for the
content details pages, enabling non-Javascript aware tools to collection information.

Due to these customizations, it requires hands on expertise on prerender.io codebase. It is
also configured to be in load balanced environment with 2 instances. There is a Jenkins
job associated to monitor the health of the configuration and send notifications daily

Apache Server Virtual Domains and Customization
GovInfo’s Public Access subsystem relies heavily on Apache Web Servers to respond to
requests from end users. Configurations for these servers are templated using standard
processes, allowing for consistent functionality and performance across environments.

UI Stylesheets and Style Guide

GovInfo's CSS files are compiled from source Sass SCSS files that are collected into a single
project to maintain a single source of design truth. Bootstrap, FontAwesome, and React
Calendar SCSS files are compiled as part of the SCSS build.

Gulp and Gulp plugins are used to transpile and build the source SCSS files into CSS. Gulp
is also used to build the style guide and CSS documentation. Autoprefixer adds browser
and vendor prefixes to styles, where needed, at build time. PostCSS is also used for adding
additional prefixes. Stylelint is used to check for errors and enforce conventions.

Style and UI Documentation
Style and UI documentation is maintained in three sets: via in-file comments, a style guide
built using FractalJS, and the UI component library workshop tool StorybookJS.

Visual Regression Testing
Visual design continuity and consistency is checked using visual regression testing by
comparing reference and test screen shots for differences. Visual regression testing is
automated using BackstopJS.

C. Technologies

The following is a list of the standards and technologies that are currently in use within the
GovInfo program.

1. Content Management and Preservation Subsystem
• Documentum Content Server, Documentum Composer, Documentum

Administrator, Process Engine, Forms Builder, Media Workspace / Digital Asset
Manager, Process Builder, Process Integrator Core, Trusted Content Services Core

o Documentum Content Server deployed on Linux

GovInfo Components and Technologies

May 2024 12

o Documentum WebTop Custom Web Application deployed on Apache
Tomcat

o Documentum xPlore and Interactive Delivery Service deployed on Linux
• Various descriptive, administrative, structural, preservation metadata schemas,

data dictionaries, and technical registry, implementation tools, including but not
limited to METS, MODS, PREMIS, PRONOM

• Various file format identification tools, including but not limited to Droid, PRONOM,
JHOVE, FITS (File Information Tool Set), Exiftool

• Various data schemas structures, transforms, and formats including JSON, XML,
XSLT, XSL, XSD

o USLM schema
o Custom internal GovInfo XML schema

• Data interchange models and frameworks, web ontologies such as RDF, OWL,
SPARQL, Apache Fuseki SPARQL Server, Apache Jena RDF Store

• Custom Applications in Java EE
• Data analytics tools such as Matomo
• COTS PII scanning tools with OCR on embedded images
• ImageMagick Converter, Redact-it, Jpylyzer, FITS, VeraPDF
• Adobe standard technology for digital signing, including Adobe Experience

Manager Forms, PDF Generator, Adobe Acrobat, Hardware Security Module
• iText, iText Pdf Optimizer, iText PdfOCR, Tesseract Engine
• HSQLDB used to Manage Jobs for Content Processing Framework
• Custom Web Application using Orbeon XForms server
• Standard COTS AV and AV API interface
• Active Directory, LDAP compliant application directories, identity management
• Common open-source application servers (e.g., Wildfly, Tomcat)
• Application Gateway & high availability using Apache Webserver

mod_proxy_balancer
• API usage including api.data.gov
• Salesforce Rest API
• Salesforce JWT authentication
• Git, GitLab EE, Azure DevOps (ADO)
• Common and standard open-source software build automation tools and IDEs

including Jenkins, Maven, Eclipse, and Nexus Artifact Repository
• Common open-source administration automation tools including Ansible
• Common open-source products for analyzing data in real time (e.g., Splunk, Zabbix,

Prometheus, Grafana)
• Red Hat Enterprise Linux

GovInfo Components and Technologies

May 2024 13

• MySQL Database
• Oracle Database used by Documentum including DataGuard
• Oracle Enterprise Manager Cloud Control

2. Public Access Subsystem Technologies
• JSON, XML, XSLT, XSL, XPath, XSD
• XML parsing and Processing using Jakarta API; JAXP, JAXB, Xalan XSLT Parser,

SAX, STAX2 APIs, XOM, and XStream
• Spring MVC, Spring boot, Restful WS, SpringDoc for OpenAPI-3.x, Templating

engine Thymeleaf, Micrometer and Servlet API & Custom XSS filters
• Embedded Servlet Container Tomcat and Jetty
• Monitoring Service using Prometheus, Grafana, Alert Manager, Node Exporter, Solr

Exporter and Custom QPS exporter
• JavaScript, TypeScript HTML, AJAX, nodejs, Prerender, Swagger-ui-react
• HTML, CSS, SASS including media queries
• Open-source libraries: httpclient, slf4j, gson, gauva, Logback, micrometer,

sitemapgen4j, OpenCSV, Tika, SolrJ, JSoup
• Automatic testing using JUnit, Mockito, rest-assured, Cucumber, Selenium, Jest

and Cypress
• Performance testing using: JMeter, Custom Model using production log files,

Grafana and timeseries database InfluxDB
• PHP, Xampp, MySQL Database, Toad Edge for MySQL
• UI architecture: Micro-frontend, Single Page Application and Responsive UI
• Application Architecture: Multi-layer Architecture, Micro-service and Event-Driven

architecture
• Scripted deployment using Ansible, Jinja2 template and Bash
• CI/CD using GitLab, Jenkins, Webhook, Nexus, Maven, npm, vite and Azure DevOps

(ADO)
• Jenkins Pipeline as code and multi-branch pipelines.
• Custom Applications in Java EE
• Common and standard open-source software build automation tools and IDEs.

including Jenkins, Maven, Eclipse, and Nexus Artifact Repository
• Common open-source administration automation tools including Ansible
• Common open-source products for analyzing data in real time (e.g., Splunk, Zabbix,

Prometheus, Grafana)
• MODS, PREMIS, METS, USLM

GovInfo Components and Technologies

May 2024 14

• Groovy Dynamic Language, Template Engine and Shell
• Message queue systems using RabbitMQ and String Stream API
• API usage including api.data.gov and api.congress.gov
• Custom Java Content and Metadata Parsers
• Core Java and RegEx
• Custom Query Parser Language (QPL), Lucene, Velocity Template Engine
• Solr deployed on common open-source application servers
• Spring MVC-Based Custom Web Applications
• Custom Spring, Spring MVC, and Spring Boot RESTful Web Services
• High Visibility, High Availability, Public Facing Web Applications using Bootstrap,

Backbone.js, React, Redux, JQuery, Vitejs, rollup, webpack, npm packaging and
publishing, Enterprise component library (building, versioning and packaging for
non-react environments like Drupal and third-party sites), End to End tests using
Cypress and Selenium web driver

• Apache webserver Configuration as Code using Ansible, Jinja2 template engine and
Python

• Application Gateway & high availability using Apache Webserver
mod_proxy_balancer and mod_proxy_hcheck

• Maintenance and c gnu compilation for the custom apache module mod_xsend
• Drupal deployed on Apache Web Server, PHP, Custom Drupal modules written in

PHP deployed on Apache Web Server, Twig 2.0 custom templates, TFA
authentication, Custom Site crawlers, Composer dependency management for PHP,
Drush shell interface for Drupal, Bootstrap custom theme, Custom Configurations
for DB interfaces, Custom Sitemap and RSS generators

• Containerization and Orchestration tools like Docker Containers, Docker-Compose,
Kubernetes, minikube, podman

• Web metrics, analytics, Matomo
• Linux, RHEL8/9
• SEO, Crawlers, Sitemaps
• CloudFlare including Cloudflare Stream
• Accessible Standards including Sections 508 and 255, WCA, WAI-ARIA
• Active Directory, LDAP 3 Compliant Application Directories, Red Hat Identity

Management (IdM)
• Swagger and Open API Documentation

	A. Overview
	B. Component Descriptions
	1. Content Management and Preservation Subsystem
	Documentum
	Databases
	Processor
	Other Applications
	OAIS Packaging
	Preprocessing and Hotfolders
	Virus Scanning
	PII Scanning
	PDF Signing and Optimization
	Publication Linking
	Metadata Editors
	USLM Web Services
	Schemas
	Content Processing Framework
	Analytics

	2. Public Access Subsystem
	Search Applications
	Solr Search Engine
	Publisher
	Consistency Check
	Parsers
	Search API
	Query Parser Language

	Web Applications and Services
	GovInfo UI Web Services
	Bulk Data Repository
	Redirect Dispatcher
	CGI Redirects
	Link Service
	Public API
	Content Curation (Drupal)
	Content Curation Search
	Notification App
	Caching Services
	Delivery Service
	Pre-Render Service
	Apache Server Virtual Domains and Customization

	UI Stylesheets and Style Guide
	Style and UI Documentation
	Visual Regression Testing

	C. Technologies
	1. Content Management and Preservation Subsystem
	2. Public Access Subsystem Technologies

